BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

2017-2018 Degree Requirements

TOTAL CREDITS FOR DEGREE: 132

UNIVERSITY CORE CURRICULUM 42 credits Required Fundamental Courses: COMM 101 Oral Comm. & Pres. 3 credits **ENGL 101 College Composition** 3 credits **UNIV 101** City-University Life 3 credits 3 credits Senior Capstone Choose Thematic Core courses in the following: Explore the World - Choice 1 3 credits Explore the World - Choice 2 3 credits **Investigate Science** 3 credits **Investigate Mathematics** 3 credits **Interpret Creative Works** 3 credits Understand People - Choice 1 3 credits Understand People - Choice 2 3 credits **Succeed in Business** 3 credits 3 credits Appreciate & Apply the Arts

Discover Technology

MAJOR R	<u>EQUIREMENTS</u>	(C=taken in the	Core	2)	90 credits	
CHEM 101	General Chemistry (Inv.	Science)	С	ET204	Programming for Engineering Tech.	3
CHEM 102	General Chemistry II		3	ET 405	Fund. Of Engineering Examination I	0
CHEM 103	General Chemistry Labo	ratory I	1	ET 406	Fund. Of Engineering Examination II	0
CHEM 104	General Chemistry Labo	ratory II	1	EE 101	Circuit Analysis I	3
MATH 181	Pre-Calculus		4	EE 102	Circuit Analysis II	3
MATH 190	Calculus I (Inv. Mathematic	s + 1 credit)	1	EE 103	Circuit Analysis Laboratory I	1
MATH 210	Caluculus II		4	EE 104	Circuit Analysis Laboratory II	1
MATH 230	Linear Algebra		3	ME 101	Statics	3
MATH 300	Calculus III		4	ME 102	Dynamics	3
MATH 310	Differential Equations		3	ME 212	Properties of Materials	3
MATH 330	Mathematical Statistics		3	ME 213	Strength of Materials	3
NSET 101	Intro to NSET (Discover To	echnology)	C	ME 215	Thermodynamics	3
PHYS 201	Fundamentals of Physics	5 I	3	ME 320	Kinematics of Machine Elements	4
PHYS 202	Fundamentals of Physics	s II	3	ME 331	Engineering Design Using Pro/ENGINEER	3
PHYS 103	Physics Laboratory I		1	ME 405	Heat Transfer	4
PHYS 104	Physics Laboratory II		1	ME 411	Fluid Mechanics	3
EGR 401	Engineering Design I		3	ME 416	Mechanical Vibrations	3
EGR 402	Engineering Design II (Ser	nior Capstone)	3	ME 421	Machine Design Theory & Project	4
				ME 424	Finite Element Analysis	3
				ME 425	FEA with ANSYS	2

3 credits

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

2017-2018 Degree Requirements

PROGRAM OBJECTIVES

Upon successful completion of this program, a student will be able to:

- 1. Students will analyze and design structural systems
- 2. Students will analyze and design mechanical systems in motion
- 3. Students will analyze and design thermal systems and processes
- 4. Students will use engineering software in design and analysis and will create engineering software
- 5. Students will apply mathematics, physics, chemistry and material properties
- 6. Students will collaborate in classroom and laboratory settings
- 7. Students will produce effective documents and oral presentations
- 8. Students will plan and manage technical projects
- 9. Students will grow professionally through independent learning
- 10. Students will take the Fundamentals of Engineering examination as a first-step towards professional licensure
- 11. Students will have knowledge of professional laws and codes
- 12. Students will understand the personal and professional roles of an engineer in society